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tum field theoretical descriptions of Mössbauer neutrino oscillations. First, we compute the

combined rate Γ of Mössbauer neutrino emission, propagation, and detection in quantum

field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We

include explicitly the effect of homogeneous line broadening due to fluctuating electromag-

netic fields in the source and detector crystals and show that the resulting formula for Γ is

identical to the one obtained previously [1] for the case of inhomogeneous line broadening.

We then proceed to a quantum mechanical treatment of Mössbauer neutrinos and show

that the oscillation, coherence, and resonance terms from the field theoretical result can be

reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet

with appropriately chosen energies and widths. On the other hand, the emission rate and

the detection cross section, including localization and Lamb-Mössbauer terms, cannot be

predicted in quantum mechanics and have to be put in by hand.
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3 Mössbauer neutrinos in quantum mechanics: Lorentzian wave packets 8

4 Discussion and conclusions 13

1 Introduction

The possibility of exploiting the Mössbauer effect in weak interactions to enhance the

small neutrino cross sections [2–6] has recently received considerable interest, both from the

experimental side [5–8] and from the theoretical side [1, 9–16]. In the proposed experiment,

neutrinos are emitted from 3H atoms embedded into a metal crystal and absorbed by 3He

atoms embedded into a similar crystal. With very optimistic assumptions on the source

activity (1 MCi), the fraction of recoilfree emissions and absorptions (0.28 each), and the

achievable spectral line width (∆E/E ∼ 10−11 eV/18.6 keV ∼ 5 · 10−16), it has been

estimates that an event rate of 103 per day could be achieved for a detector containing 1 g

of 3He and placed at a baseline L = 10 m [6].1 These events could be counted by observing

the subsequent decays of the produced 3H in the detector, or by chemically extracting

and counting the number of produced 3H atoms. However, it is far from clear whether

the above experimental performance can be achieved in practice, and, in fact, the event

rate may well be many orders of magnitude smaller [8], so that the question of whether a

Mössbauer neutrino experiment can be realized in practice is still open.

In spite of this, Mössbauer neutrinos have already now proven to be an excellent test

case for studying the quantum mechanics and quantum field theory of neutrino oscillations

theoretically. In particular, their extremely small energy spread of O(10−11 eV) [7, 21]

has led to the question whether a coherent emission and absorption of different neutrino

mass eigenstates, which is a prerequisite for oscillations, is possible [11, 14]. Even though

a detailed quantum field theoretical treatment, requiring no a priori assumptions on the

neutrino wave function, shows that oscillations do occur in a Mössbauer neutrino experi-

ment [1, 13], such an approach also reveals that Mössbauer neutrinos are special because

1It has been suggested recently that it might even be possible to reach a line width of O(10−24 eV),

corresponding to the natural line width of tritium decay [17–19]. This would imply an additional enhance-

ment of the event rate by a factor of 1013, allowing for smaller sources and detectors, or for longer baselines.

However, the arguments given in [17–19] in favor of this additional enhancement have been disproven in

ref. [20].
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many of the assumptions and approximations that are commonly made in the theoretical

treatment of conventional neutrino oscillation experiments are invalid for them.

In this paper, we will use the example of Mössbauer neutrinos to discuss the correspon-

dence between quantum mechanical and quantum field theoretical approaches to neutrino

oscillations. In section 2, we will derive the combined rate of Mössbauer neutrino emission,

propagation, and detection in quantum field theory (QFT). We will for the first time explic-

itly include homogeneous line broadening effects arising from fluctuating electromagnetic

fields in the solid state crystals forming the Mössbauer source and detector, and we will

show that, as anticipated in ref. [1], the result is identical to the one obtained for inhomo-

geneous line broadening due to crystal imperfections. We will then derive the same result

from quantum mechanics (QM) in section 3, treating the neutrino as a wave packet. A

comparison of the QFT and QM approaches will show that QM is inferior to QFT because

more ad hoc assumptions are required, e.g. on the shape and width of the neutrino wave

packets. If, however, all parameters are chosen appropriately in the QM formalism, the

QFT result can be reproduced. In section 4, we will discuss our results and conclude.

2 Mössbauer neutrinos in quantum field theory and homogeneous line

broadening

To compute the amplitude for Mössbauer neutrino production, propagation, and detection

in QFT, we follow the formalism developed in [1] and consider the Feynman diagram shown

in figure 1. Here, the external lines correspond to the 3H and 3He atoms in the source (S)

and the detector (D), while the internal line describes the propagating antineutrino. Since

we are mainly interested in the phenomenology of Mössbauer neutrino oscillations, we avoid

an explicit treatment of solid state binding forces and instead assume the external particles

to reside in the ground states of simple harmonic oscillator potentials, with oscillator

frequencies of the order of the Debye temperature ΘD ∼ 600 K ≃ 0.05 eV of the respective

crystals [6, 7]. It is known from the theory of the classical photon Mössbauer effect [22], that

this model provides qualitatively correct results, even though it is, of course, insufficient

for computing a precise prediction of the total event rate. If we denote the masses of the

external particles by mA (A = {H,He}), their average positions by xB (B = {S,D}), the

harmonic oscillator frequencies by ωA,B, and the ground state energies by EA,B, the wave

functions corresponding to the external legs in figure 1 are given by,

ψA,B,0(x, t) =

[

mAωA,B

π

]
3
4

exp

[

− 1

2
mAωA,B|x − xB |2

]

e−iEA,Bt . (2.1)

Due to interactions of the atoms with their surroundings, EA,B will not be constant in time,

but will fluctuate around the average zero point energy EA,B,0 = mA + 1
2ωA,B [21, 23–26].

These fluctuations are, for example, induced by random thermal spin flips of neighboring

atoms. They are generally referred to as homogeneous line broadening effects because, as

we will see below, they limit the achievable sharpness of the Mössbauer resonance. To

describe homogeneous line broadening, we make the replacement [23]

e−iEA,Bt → e−iEA,B,0t fA,B(t) , (2.2)
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Figure 1. Feynman diagram for neutrino emission and absorption in the 3H– 3He system.

in eq. (2.1), where

fA,B(t) = exp

[

− i

∫ t

0
dt′

(

EA,B(t′) − EA,B,0

)

]

(2.3)

is integrated phase shift induced by the fluctuations of EA,B . Note that this approach

accounts only for homogeneous line broadening due to solid-state effects, but not for broad-

ening due the natural line width. The latter effect (which is theoretically interesting, but

completely negligible in the 3H– 3He system) has been studied in detail in ref. [1]. The

transition amplitude corresponding to figure 1, including the modulation factors (2.3), is

iA =

∫

d3x1 dt1

∫

d3x2 dt2

(

mHωH,S

π

)
3
4

exp

[

− 1

2
mHωH,S|x1 − xS |2

]

fH,S(t1) e
−iEH,St1

·
(

mHeωHe,S

π

)
3
4

exp

[

− 1

2
mHeωHe,S |x1 − xS |2

]

f∗He,S(t1) e
+iEHe,St1

·
(

mHeωHe,D

π

)
3
4

exp

[

− 1

2
mHeωHe,D|x2 − xD|2

]

fHe,D(t2) e
−iEHe,Dt2

·
(

mHωH,D

π

)
3
4

exp

[

− 1

2
mHωH,D|x2 − xD|2

]

f∗H,D(t2) e
+iEH,Dt2

·
∑

j

Mµ
SMν∗

D |Uej |2
∫

d4p

(2π)4
exp

[

− ip0(t2 − t1) + ip(x2 − x1)
]

· ūe,Sγµ(1 − γ5)
i(/p+mj)

p2
0 − p2 −m2

j + iǫ
(1 + γ5)γνue,D . (2.4)

Here, mj are the neutrino mass eigenvalues, Uej are elements of the leptonic mixing matrix,

and the nonrelativistic (i.e. momentum-independent) electron spinors are denoted by ue,S

for the electron that is emitted in 3H decay in the source, and by ue,D for the electron that

is destroyed in the neutrino capture process in the detector. The matrix elements Mµ
S and

Mµ
D are given by

Mµ
S,D =

GF cos θc√
2

ψe(R) ūHe(MV δ
µ
0 − gAMAγ

iγ5 δµ
i /

√
3)uH κ

1/2
S,D , (2.5)
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where GF is the Fermi constant, θc the Cabibbo angle, and uA,B (with A = {H,He},
B = {S,D} as before) are the non-relativistic 3H and 3He spinors. The vector and axial

vector (or Fermi and Gamow-Teller) nuclear matrix elements are MV = 1 and MA ≈
√

3,

respectively [27, 28], and the axial-vector coupling constant is gA ≃ 1.25. The quantity

ψe(R) gives the value of the anti-symmetrized atomic wave function of 3He at the surface

of the nucleus, while the factor

κS,D =

∣

∣

∣

∣

∫

ΨZ=2,S,D(r)∗ ΨZ=1,S,D(r) d3r

∣

∣

∣

∣

2

. (2.6)

accounts for the fact that the spectator electron in bound state 3H decay and induced

orbital electron capture on 3He changes from the 1s state of 3H into the 1s state of 3He,

or vice-versa.

The spatial integrals in (2.4) yield a factor exp[−p2/2σ2
p ] exp[ipL], with the effective

momentum uncertainty σp of the experiment defined by

1

σ2
p

=
1

σ2
pS

+
1

σ2
pD

=
1

mHωH,S +mHeωHe,S
+

1

mHωH,D +mHeωHe,D
, (2.7)

and with the baseline vector

L = xD − xS . (2.8)

To evaluate the three-momentum integral, we employ the Grimus-Stockinger theorem [29],

which states that, for any three times continuously differentiable function ψ(p) (p ∈ R
3),

with ψ and all its first and second derivatives decreasing at least as 1/|p|2 for |p| → ∞,

the following relation holds for any real number A > 0:
∫

d3p
ψ(p) eipL

A− p2 + iǫ

|L|→∞−−−−→ −2π2

L
ψ

(√
AL

L

)

ei
√

AL + O
(

L− 3
2

)

. (2.9)

Effectively, this formula gives the form of the Feynman propagator for propagation over

macroscopic distances. The parameter A corresponds to squared modulus of the on-shell

momentum component of the propagating particle. Applying the Grimus-Stockinger the-

orem to our expression for A, we find

iA =
−i

8π2L
N

∑

j

Mµ
SMν∗

D |Uej |2
∫ ∞

−∞
dt1 dt2 fH,S(t1) f

∗
He,S(t1) fHe,D(t2) f

∗
H,D(t2)

·
∫ ∞

−∞
dp0 exp

[

−
p2
0 −m2

j

2σ2
p

]

e
i
q

p2
0−m2

jL
e−i(ES,0−p0)t1+i(ED,0−p0)t2

· ūe,Sγµ(1 − γ5)(/pj
+mj)(1 + γ5)γνue,D , (2.10)

with pj ≡ (p0,
√

p2
0 −m2

j L/L) and with the constant

N =

(

mHωH,S

π

)
3
4
(

mHeωHe,S

π

)
3
4
(

mHeωHe,D

π

)
3
4
(

mHωH,D

π

)
3
4

·
(

2π

mHωH,S +mHeωHe,S

)
3
2
(

2π

mHωH,D +mHeωHe,D

)
3
2

(2.11)
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containing the wavefunction normalization factors from eq. (2.1) and the numerical prefac-

tors that have arisen in the x1 and x2 integrations. Since we do not know the exact form of

the modulation factors fA,B(t), we cannot evaluate the time integrals at this stage. How-

ever, ultimately, we are only interested in the transition rate Γ, which is proportional to

〈AA∗〉, the statistical average of AA∗ over all possible 3H and 3He states in the source and

the detector. This expression can be simplified using statistical arguments. In particular,

when evaluating it, we encounter the quantity

BS(t1, t̃1) ≡
〈

fH,S(t1) f
∗
He,S(t1) f

∗
H,S(t̃1) fHe,S(t̃1)

〉

=

〈

exp

[

− i

∫ t1

t̃1

dt′ ∆ES(t′)

]〉

,

(2.12)

and a similar term from the detector-related modulation factors. Here, t1 and t̃1 are the

time variables appearing in the expressions for A and A∗, respectively. To shorten the

notation, we have defined a quantity ∆ES(t′) ≡ ES(t′) − ES,0 ≡ [EH,S(t′) − EHe,S(t′)] −
[EH,S,0−EHe,S,0], which gives the deviation of the energy of the neutrino emission line from

its mean value at time t′. Following [23], we assume ∆ES(t′) to be a Gaussian random

variable centered around zero:
〈

∆ES(t′)
〉

= 0 . (2.13)

Moreover, we assume fluctuations at different points in time to be uncorrelated (Markovian

approximation), which implies
〈

∆ES(t′)∆ES(t′′)
〉

= γS δ(t
′ − t′′) . (2.14)

This is a good approximation if the correlation time of the fluctuations is much smaller

than all other time scales appearing in the problem, in particular the tritium life time and

the running time of the experiment. The constant γS will turn out to be the width of the

neutrino emission line. Proceeding along the lines of refs. [23, 30], we expand (2.12) into a

Taylor series and obtain

BS(t1, t̃1) =

∞
∑

n=0

(−i)n
n!

∫ t1

t̃1

dt(1) · · · dt(n)
〈

∆ES(t(1)) · · ·∆ES(t(n))
〉

. (2.15)

One can now use the assumption that ∆ES(t(i)) is normally distributed around zero to

show that the n-point correlation functions on the right hand side can, for even n, be

rewritten by splitting them into products of two-point functions (which can be evaluated

by using (2.14)) and summing over all (n − 1)(n − 3) · · · 3 · 1 = n!/[2n/2(n/2)!] distinct

combinations of such two-point functions. For odd n, the n-point correlation functions can

be transformed into products of (n − 1)/2 two-point functions and a one-point function,

which is zero by virtue of eq. (2.13). Therefore, BS(t1, t̃1) takes the form

BS(t1, t̃1) =

∞
∑

n=0

(−γS/2)
n

n!

n
∏

i=1

∫ t1

t̃1

dt(2i) dt(2i−1) δ(t(2i) − t(2i−1))

= exp

[

−1

2
γS |t1 − t̃1|

]

. (2.16)

– 5 –
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The analogous expression for the detector-related modulation factors is

BD(t2, t̃2) = exp

[

−1

2
γD|t2 − t̃2|

]

. (2.17)

Using
∫ ∞

−∞
dt1 dt̃1 dt2 dt̃2 exp

[

−1

2
γS |t1 − t̃1| − i(ES,0 − p0)t1 + (ES,0 − p̃0)t1

]

· exp

[

−1

2
γD|t2 − t̃2| + i(ED,0 − p0)t2 − (ED,0 − p̃0)t2

]

= (2π)4[δ(p0 − p̃0)]
2 γS/2π

(ES,0 − p0)2 + γ2
S/4

γD/2π

(ED,0 − p0)2 + γ2
D/4

, (2.18)

the expression for 〈AA∗〉 now becomes

〈AA∗〉 =
N 2

64π4L2

∑

j,k

Mµ
SMν∗

D Mρ∗
S Mσ

D|Uej |2|Uek|2
∫ ∞

−∞
dp0 dp̃0 exp

[

−
2p2

0 −m2
j −m2

k

2σ2
p

]

·(2π)4[δ(p0 − p̃0)]
2 γS/2π

(ES,0 − p0)2+γ2
S/4

γD/2π

(ED,0 − p0)2+γ2
D/4

e
i
(q

p2
0−m2

j−
√

p2
0−m2

k

)

L

·ūe,Sγµ(1 − γ5)(/pj
+mj)(1 + γ5)γνue,Dūe,Dγσ(1 − γ5)(/̃pj +mk)(1 + γ5)γρue,D .

(2.19)

We can rewrite the squared δ-function as T/2π · δ(p0 − p̃0) (with T the total running time

of the experiment), and use the remaining δ-factor to evaluate the p̃0 integral. We are

left with the p0 integration, which receives its main contribution from the region where

|ES,0 − p0| . γS and |ED,0 − p0| . γD due to the Lorentzians on the right hand side of

eq. (2.19). Since γS,D ≪ σp and γS,D ≪ ES,0, ED,0, the spinorial factors as well as the real

exponential that will lead to the generalized Lamb-Mössbauer factor and to the localization

term are almost constant over this region and may be replaced by their values at

Ē =
1

2
(ES,0 + ED,0) . (2.20)

If we finally expand the oscillation phase in ∆m2
jk/p

2
0, the p0 integral becomes [1]

Ijk ≡
∫ ∞

−∞
dp0 γS/2π

(p0 − ES,0)2 + γ2
S/4

γD/2π

(p0 − ED,0)2 + γ2
D/4

exp

[

−i
∆m2

jkL

2p0

]

=
1

2π

1

(ES,0 − ED,0)2 + (γS+γD)2

4

{

γS + γD

2
(A

(S)
jk +A

(D)
jk )

− 1

2

(A
(S)
jk −A

(D)
jk )

[

(ES,0 − ED,0)(γS − γD) ± i (γS+γD)2

2

]

ES,0 − ED,0 ± i γS−γD

2

}

, (2.21)

with the abbreviations

A
(B)
jk = exp

[

− i
∆m2

jk

2(EB,0 ± i γB

2 )
L

]

≃ exp

[

− 2πi
L

Losc
B,jk

]

exp

[

− L

Lcoh
B,jk

]

, (2.22)

– 6 –
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and with the oscillation and coherence lengths

Losc
B,jk =

4πEB,0

∆m2
jk

≃ 4πĒ

∆m2
jk

and Lcoh
B,jk =

4E2
B,0

γB |∆m2
jk|

≃ 4Ē2

γB |∆m2
jk|

. (2.23)

In eq. (2.21), the upper (lower) signs correspond to ∆m2
jk > 0 (∆m2

jk < 0). Thus, the

transition rate Γ for a Mössbauer neutrino experiment dominated by homogeneous line

broadening is, according to Fermi’s Golden Rule,

Γ =
Γ0B0

4πL2
YSYD

1

2π

∑

j,k

|Uej |2|Uek|2 exp

[

−
2Ē2 −m2

j −m2
k

2σ2
p

]

1

(ES,0 − ED,0)2 + (γS+γD)2

4

·
[

γS + γD

2
(A

(S)
jk +A

(D)
jk ) − 1

2

(A
(S)
jk −A

(D)
jk )

[

(ES,0 − ED,0)(γS − γD) ± i (γS+γD)2

2

]

ES,0 − ED,0 ± i γS−γD

2

]

,

(2.24)

where

Γ0 ≡ G2
F cos2 θc

π
|ψe(R)|2m2

e

(

|MV |2 + g2
A|MA|2

)

(

ES,0

me

)2

κS (2.25)

is the rate of bound state 3H decay, and

B0 ≡ 4πG2
F cos2 θc |ψe(R)|2

(

|MV |2 + g2
A|MA|2

)

κD (2.26)

is related to the cross section for induced orbital electron capture on free 3He by [31]

σ(Eν) = B0 ρ(Eν̄,res) . (2.27)

Here ρ(Eν̄,res) is the spectral density of incident neutrinos, i.e. the number of neutrinos

per unit energy interval, at the resonance energy for this case, Eν̄,res = Q + ER (where

Q = 18.6 keV is the Q-value of the process and ER is the recoil energy transferred to the

atom). The quantities YS and YD in eq. (2.24) are given by

YB = 8

(
√

mH ωH,B

mHe ωHe,B
+

√

mHe ωHe,B

mH ωH,B

)−3

(2.28)

for B = {S,D}.
As anticipated, (2.24) coincides precisely with the corresponding expression for the

case of inhomogeneous line broadening, given in eq. (41) of ref. [1].2 We find again a Breit-

Wigner-like resonance term, which suppresses Mössbauer transitions if the central energies

ES,0 and ED,0 of the emission and absorption lines differ by more than the average line

width (γS + γD)/2, and a factor

exp

[

−
2Ē2 −m2

j −m2
k

2σ2
p

]

= exp

[

−
(pmin

jk )2

σ2
p

]

exp

[

−
|∆m2

jk|
2σ2

p

]

, (2.29)

2In the present work, we have chosen to present Γ in a form where the Breit-Wigner term is factorized

out of the term containing the oscillation and coherence exponentials. It is straightforward to check that

this form is identical to the form used in ref. [1].

– 7 –
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with

(pmin
jk )2 = Ē2 − max(m2

j ,m
2
k) , (2.30)

which we interpret as a generalized Lamb-Mössbauer factor (or fraction of recoil-free emis-

sions/absorptions), multiplied with a localization term. The latter can be neglected if σ2
p ≫

∆m2
jk, or equivalently, if Losc

B,jk ≫ 4πσxĒ/σp, where σx ≡ 1/2σp is the spatial delocalization

of the emitting and absorbing atoms. For Ē = 18.6 keV and σp ∼ (mHθD)1/2 ∼ 7 keV,

it is clear that this inequality is easily fulfilled since σx is of the order of the interatomic

distance, while Losc
B,jk ∼ 20 m for oscillations driven by the atmospheric mass squared differ-

ence ∆m2
31 and Losc

B,jk ∼ 600 m for oscillations driven by the solar mass squared difference

∆m2
21. The factors A

(B)
jk in eq. (2.24) contain the oscillation exponentials and the decoher-

ence terms which describe the effect of wave packet separation due to the different group

velocities associated with different neutrino mass eigenstates. However, it is easy to see

that decoherence is not an issue in any realistic Mössbauer neutrino experiment because

the corresponding coherence lengths are of O(1013 km).

The fact that the formula for Γ is identical for the cases of homogeneous and in-

homogeneous line broadening implies that these two situations cannot be distinguished

experimentally. This confirms a more general theorem by Kiers, Nussinov, and Weiss [32]

which states that it is impossible to distinguish an ensemble of neutrino wave packets with

identical momentum distributions from an ensemble of plane wave neutrinos whose indi-

vidual momenta follow the same distribution. In fact, the density matrix describing the

ensemble is identical for both cases. Applied to Mössbauer neutrinos, the case of neutrino

wave packets corresponds to a situation where homogeneous line broadening is dominant,

so that each neutrino wave packet is broadened because the energy of the emission line, ES ,

changes during the emission process. In contrast, for mostly inhomogeneous line broad-

ening, each individual neutrino can be approximately described by a plane wave because

it is emitted with an extremely small energy spread (which is ultimately determined by

subdominant homogeneous solid state effects, by the natural width, and by the Heisenberg

principle). Different neutrinos, however, are emitted with different energies which depend,

for example, on the proximity of the emitting atom to crystal impurities and lattice defects.

To end this section, let us give a simpler and more useful form of eq. (2.24), obtained

by neglecting the localization and coherence terms and considering the two-flavor approx-

imation, with an effective mixing angle θ, an effective mass squared difference ∆m2, and

an average absolute neutrino mass m̄ [1]:

Γ ≃ Γ0 B0
4πL2 YSYD exp

[

− Ē2−m̄2

σ2
p

]

(γS+γD)/2π

(ES,0−ED,0)2+
(γS+γD)2

4

{

1 − sin2 2θ sin2

(

π L
Losc

)}

. (2.31)

3 Mössbauer neutrinos in quantum mechanics: Lorentzian wave packets

Let us now discuss how oscillations of Mössbauer neutrinos can be understood in the

framework of quantum mechanics. Since QM is unable to describe particle creation and

destruction, we cannot directly include the production and detection processes into our
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formalism, as in QFT. Instead, we will first compute the probability for transitions be-

tween the initial and final neutrino states, and then multiply this with the emitted flux

and with the absorption cross section to obtain the overall event rate Γ. We will describe

the propagating neutrino as a superposition of three wave packets, one for each mass eigen-

state [32–37]. As we have discussed above, such a description corresponds to Mössbauer

neutrinos in the regime of homogeneous line broadening, while the case of inhomogeneous

broadening would be more naturally implemented by considering an ensemble of many

plane wave neutrinos in the density matrix approach [32]. However, since homogeneous

and inhomogeneous line broadening cannot be distinguished experimentally, it is sufficient

to focus on one of the two cases. We use the wave packet picture because it provides in-

sights into the evolution of each single neutrino, which we find useful to better understand

the localization and coherence conditions that will emerge.

Unlike most other authors, who use wave packets with a Gaussian shape, we will use

wave packets with a Lorentzian momentum distribution because it is known from the clas-

sical Mössbauer effect that homogeneous and inhomogeneous line broadening mechanisms

lead to a Lorentzian energy spread [38, 39]. The momentum space wave function for the

electron antineutrino produced in 3H decay thus has the form

〈p|ν̄eS(t)〉 =
1

NS

∑

j

Uej fjS

√

γS/2π

p− pjS + iγS/2
exp

[

− iEjt
]

|νj〉 . (3.1)

The index S indicates that this state is produced in the neutrino source, and the normaliza-

tion factor is NS =
(
∑

j |Uej |2 |fjS|2
)1/2

. Similarly, the detection process can be described

as a projection of |ν̄eS(t)〉 onto a state |ν̄eD〉 with the momentum space representation

〈p|ν̄eD〉 =
1

ND

∑

j

Uej fjD

√

γD/2π

p− pjD + iγD/2
exp

[

− ipL
]

|νj〉 (3.2)

and the normalization factor ND =
(
∑

j |Uej|2 |fjS|2
)1/2

. In the above expressions, pjS,

pjD are the central momenta of the wave packets, Ej = (p2 +m2
j )

1/2, and γS , γD are the

wave packet widths. Moreover, we have introduced phenomenological fudge factors fjS,

fjD that will be motivated and discussed below.

For Mössbauer neutrinos, γS and γD are of the order of the energy uncertainty asso-

ciated with the emission and detection processes, which is of order 10−11 eV. The much

larger momentum uncertainties of the source and the detector do not play a role because

the neutrino is on-shell, so that by virtue of the relativistic energy-momentum relation the

momentum uncertainty of the neutrino cannot be larger than its energy uncertainty. (Of

course, the momenta associated with the different mass eigenstates have to differ by much

more than 10−11 eV in order to ensure energy-momentum conservation in the production

and detection processes.)

Note that |ν̄eD〉 is time-independent (on this point, we disagree with ref. [37], where

the detection operator |νβD〉〈νβD| is assumed to be not a time-independent but only a

time-averaged quantity); on the other hand, a factor exp[−ipL] is required to center the

wave packet around x = L.
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The phenomenological fudge factors fjS and fjD can be used to describe a possible

mass dependence of the neutrino production and detection amplitudes. For example, we

have seen in the previous section that the Lamb-Mössbauer factor depends on mj, so that

the production and absorption of the lighter neutrino mass eigenstates is slightly suppressed

compared to the production and absorption of the heavier ones. This can be viewed as a

slight dynamical reduction of neutrino mixing. Let us stress that fjS and fjD cannot be

determined in the QM approach, and have to be put in by hand. We will choose

fjS ≡ exp

[

Ē2 −m2
j

2σ2
pS

]

, fjD ≡ exp

[

Ē2 −m2
j

2σ2
pD

]

(3.3)

(with σpS, σpD, and Ē defined as in eqs. (2.7) and (2.20), respectively) in order to ultimately

reproduce the correct Lamb-Mössbauer factor.

The amplitude for the transition |ν̄eS(t)〉 → |ν̄eD〉 is given by

A(t, L) = 〈ν̄eD|ν̄eS(t)〉 =

∫

dp 〈ν̄eD|p〉 〈p|ν̄eS(t)〉 . (3.4)

To be able to evaluate this integral, we make use of the smallness of γS and γD, and expand

Ej around the average momentum p̄j = (pjS + pjD)/2, which gives

Ej =
√

p2 +m2
j t ≃ Ēj t+ v̄jt(p− p̄j) , (3.5)

with the definitions

Ēj =
√

p̄2
j +m2

j and v̄j =
p̄j

√

p̄2
j +m2

j

. (3.6)

This approximation corresponds to neglecting dispersion (wave packet spreading), which is

a second-order effect [40]. Eq. (3.5) is a good approximation as long as (p−p̄j)/Ēj ≪ Ē2
j /m

2
j

for all p within the peak regions of the source and detector wave packets. We can now

compute A(t, L), and obtain

A(t, L) =
1

NSND

∑

j

|Uej|2 fjSf
∗
jD

−iγS

pjS − pjD − i(γS + γD)/2
exp

[

− iĒjt+ iv̄j p̄jt
]

·
{

exp
[(

ipjS +
γS

2

)

(L− v̄jt)
]

θ(v̄jt− L) + exp
[(

ipjD − γD

2

)

(L− v̄jt)
]

θ(−v̄jt+ L)
}

,

(3.7)

where θ denotes the Heaviside step function.

The next step is to compute the transition probability for the process |ν̄eS〉 → |ν̄eD〉,
defined by

P(L) =
1

T

∫ T/2

−T/2
dtA∗(t, L)A(t, L) . (3.8)

Here, the incoherent averaging over the running time T of the experiment reflects the

fact that we do not precisely know at which point in time the production and detection
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reactions take place. (The detection time is, of course, implicitly constrained by the fact

that the neutrino wave packet has sizeable overlap with the detector only during a very

short time interval.) Physically, P(L) gives the time-averaged probability that a neutrino

prepared in the state |ν̄eS(0)〉 at t = 0 is detected as |ν̄eD〉 at a later time. Note that P(L)

is not a ν̄e survival probability in the usual sense because in general P(L) |∆m2
jk

=0 6= 1.

In particular, irrespective of the neutrino mixing parameters, P(L) can only be sizeable

if the wave packets |ν̄eS(t)〉 and |ν̄eD〉 have sufficient overlap in momentum space. This is

precisely the Mössbauer resonance condition.

The experimentally observable event rate Γ is obtained by multiplying P(L) with the

Mössbauer neutrino emission rate ΓMB
0 , the Mössbauer neutrino detection cross section

σMB, and the geometrical flux suppression factor 1/4πL2:

Γ =
1

4πL2
ΓMB

0 P(L)σMB (3.9)

≡ 1

4πL2

(

Γ0 YS

∑

j

|Uej |2|fjS|2
)

P(L)
(

B0YD
T

2π

∑

j

|Uej |2|fjD|2
)

. (3.10)

The parenthesized expressions for ΓMB
0 and σMB have to be derived in the QFT formalism

discussed in section 2 and ref. [1]. It is impossible to derive them in QM because they

describe particle creation and annihilation processes. Note that we are here using the cross

section for the limiting case of an infinitely sharp Mössbauer resonance — hence the factor

T/2π, which should be understood as an approximate δ-peak of the form

δ(0) ≃ lim
E→ED,0

∫ T/2

−T/2
dt ei(E−ED,0)t =

T

2π
. (3.11)

The effect of line broadening is already accounted for by the fact that A(t, L) is suppressed

if |pjS − pjD| ≫ (γS + γD)/2 (cf. eq. (3.7)).

Evaluation of Γ requires splitting the time integral in eq. (3.8) into three separate

integrals with integration domains (−∞, L/v̄k], (L/v̄k, L/v̄j), [L/v̄j ,∞) for mj > mk, and

(−∞, L/v̄j ], [L/v̄j , L/v̄k], [L/v̄k,∞) for mj < mk. (It is justified to replace the integration

boundaries ±T/2 from eq. (3.8) by infinity here because the overlap of the wave packets

|ν̄eS(t)〉 and |ν̄eD〉 decreases exponentially at large T , when the neutrino has long passed

the detector.) We will only show how to evaluate one of the above integrals, since the

others are similar. Consider

Jjk =

∫ L/v̄j

L/v̄k

dt exp

[

− i(Ēj − Ēk)t+ i(v̄j p̄j − v̄kp̄k)t− i(v̄jpjD − v̄kpkS)t

+
1

2
(γD v̄j − γS v̄k)t+ i(pjD − pkS)L− 1

2
(γD − γS)L

]

(3.12)

for mj > mk. We use the approximation of ultrarelativistic neutrinos (mj ≪ Ēj), which

suggests the expansions

pjS ≃ ES,0 − (1 − ξS)
m2

j

2ES,0
, pjD ≃ ED,0 − (1 − ξD)

m2
j

2ED,0
, (3.13)
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from which it follows that

Ēj ≃ Ē + ξ̄
m2

j

2Ē
, p̄j ≃ Ē − (1 − ξ̄)

m2
j

Ē
, v̄j ≃ 1 −

m2
j

2Ē2
, (3.14)

where

Ē ≡ 1

2
(ES,0 + ED,0) and 1 − ξ̄ ≡ Ē

2

(

1 − ξS
ES,0

+
1 − ξD
ED,0

)

. (3.15)

In these expressions, ES,0 and ED,0 are the mean energies for the case of massless neutrinos,

and ξS , ξD are constant parameters determined by the properties of the source and the

detector, respectively. These parameters can be calculated only in an explicit treatment

of the neutrino production and detection processes. For conventional neutrino sources, ξS
and ξD are of O(1), but for Mössbauer neutrinos, the energies associated with different

neutrino mass eigenstates have to coincide within the line widths γS and γD, so that ξS ,

ξD and ξ̄ must be extremely small in this case. Indeed, we will see below that, in order to

reproduce our QFT result (2.24), we have to take ξS = ξD = 0.

Plugging (3.14) into (3.12), neglecting terms containing the small product ∆m2
jk(ES,0−

ED,0)/Ē
2 and, in the denominator, also neglecting terms of order γ̃m2

j/Ē
2, we obtain

Jjk =
A

(S)
jk −A

(D)
jk

1
2(γD − γS) + i(ES,0 − ED,0) − iξ̄∆m2

jk/2Ē
(3.16)

with the oscillation and coherence terms abbreviated as

A
(B)
jk = exp

[

− i
∆m2

jkL

2Ē
−

|∆m2
jk|γBL

4Ē2

]

≡ exp

[

− 2πi
L

Losc
jk

− L

Lcoh
B,jk

]

. (3.17)

for B = {S,D}. Note that the A
(B)
jk are identical to the quantities of the same name

defined in eq. (2.22), up to the replacement of EB,0 by Ē, which leads to corrections of

O(∆m2
jk(ES,0 − ED,0)/Ē

2). Since we have neglected terms of this order in the derivation

of (3.16), we should for consistency also neglect them here. The full expression for Γ is

Γ =
Γ0B0

4πL2
YSYD

1

2π

∑

j,k

|Uej|2|Uek|2 exp

[

−
2Ē2 −m2

j −m2
k

2σ2
p

]

γSγD

·
[

ES,0 − ED,0 −m2
j

(

1 − ξS
2ES,0

− 1 − ξD
2ED,0

)

− i(γS + γD)

2

]−1

·
[

ES,0 − ED,0 −m2
k

(

1 − ξS
2ES,0

− 1 − ξD
2ED,0

)

+
i(γS + γD)

2

]−1

·







A
(S)
jk

γS + iξS
∆m2

jk

2ES,0

+
A

(D)
jk

γD − iξD
∆m2

jk

2ED,0

+
A

(S)
jk −A

(D)
jk

1
2 (γD − γS) ± i(ES,0 − ED,0) − iξ̄

∆m2
jk

2Ē







.

(3.18)
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In the last term, the upper sign applies to the case ∆m2
jk > 0, while the lower one is for

∆m2
jk < 0. As discussed above, ξS and ξD are very small for Mössbauer neutrinos. If we

neglect them completely, Γ simplifies to

Γ =
Γ0B0

4πL2
YSYD

1

2π

∑

j,k

|Uej|2|Uek|2 exp

[

−
2Ē2 −m2

j −m2
k

2σ2
p

]

1

(ES,0−ED,0)2+ 1
4(γS +γD)2

·
[

γS + γD

2
(A

(S)
jk +A

(D)
jk ) − 1

2

(A
(S)
jk −A

(D)
jk )

[

(ES,0 − ED,0)(γS − γD) ± i (γS+γD)2

2

]

ES,0 −ED,0 ± iγS−γD

2

]

.

(3.19)

This equation is identical to our QFT result, eq. (2.24) (within the approximations made

in the two approaches). In particular, we find the same oscillation, coherence, and reso-

nance terms.

4 Discussion and conclusions

Let us now summarize and discuss our results. In the first part of this paper, we have used

quantum field theoretical techniques to derive the rate Γ of Mössbauer neutrino emission,

propagation, and absorption (eq. (2.24)). For the first time, we have explicitly included the

effect of homogeneous line broadening due to fluctuating electromagnetic fields in the solid

state crystals forming the source and the detector. We have confirmed the expectation

from ref. [1] that the resulting formula for Γ agrees precisely with the one obtained in [1]

for the case of inhomogeneous line broadening caused by crystal defects and impurities.

In particular, we have confirmed that, also for homogeneous line broadening, Γ has a

Breit-Wigner-like resonance structure, and contains oscillation, localization, and coherence

exponentials. Moreover, our formula accounts for the suppression of recoilless emission and

absorption processes compared to their non-recoilless counterparts through a generalized

Lamb-Mössbauer factor. We have also noted that in realistic experiments the localization

and decoherence terms are irrelevant and may be set equal to unity. The localization term

enforces the condition that the quantum mechanical delocalization of the neutrino source

and detector have to be small compared to the oscillation lengths for oscillations to take

place, a condition that is easily fulfilled in any oscillation experiment. The decoherence

term, on the other hand, accounts for the possibility of wave packet separation due to the

different group velocities associated with different neutrino mass eigenstates, but also this

does not happen in terrestrial experiments.

We have then proceeded to a derivation of Γ in a quantum mechanical approach, in

which the neutrino is described by a Lorentzian wave packet of the form (3.1). We have

arrived at eq. (3.19), which coincides with the QFT result (2.24). However, since the neu-

trino production and detection processes, which involve particle creation and annihilation,

cannot be described in QM, the Mössbauer neutrino production rate as well as the detec-

tion cross section had to be put in by hand. Also, the properties of the neutrino wave

packets (shape, width, central momenta) had to be chosen in an ad hoc way instead of

emerging naturally from the formalism or being related to properties of the source and the
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detector. Once the appropriate choices for these parameters are made, the Breit-Wigner-

shaped resonance factor as well as the oscillation and decoherence terms can be derived.

The correct Lamb-Mössbauer and localization factors are obtained only if suitably chosen

phenomenological weighting factors fjS, fjD for the different neutrino mass eigenstates are

introduced in the neutrino wave function to account for the tiny dependence of the emission

and absorption probabilities on the neutrino mass.

As expected, Γ factorizes into the emitted neutrino flux, a transition probability P(L),

and the detection cross section. While in the QM approach, this property is introduced

as an assumption in eq. (3.9), it emerges naturally in QFT. The reason is that for large

propagation distance L off-shell effects become negligible, and according to the Grimus-

Stockinger theorem eq. (2.9) the propagator then reduces to the exponential phase factor

exp(ipL) (with p being the modulus of the neutrino momentum), which is also used in QM

to describe the spatial evolution of particles.

In conclusion, we have shown that the QM approach to Mössbauer neutrino oscilla-

tions, in which the production, propagation, and detection processes are treated separately,

is able to reproduce the results obtained in the QFT approach, in which these processes

are a priori considered as a single entity and their factorization emerges as a result. In

general, the framework of QFT is significantly more robust because it does not require any

assumptions on the neutrino wave function, whose parameters are instead automatically

determined from the much less ambiguous properties of the neutrino source and the detec-

tor. For example, homogeneous and inhomogeneous line broadening are easy to implement

in QFT (see section 2 and ref. [1]), while in QM, they have to be accounted for by choosing

appropriate wave packet widths. Also, the emission rate, the detection cross section, and

the Lamb-Mössbauer factor cannot be predicted in QM and have to be put in by hand. On

the other hand, the QM approach can give a better physical understanding of the origin

of oscillation, decoherence, and resonance phenomena once all free parameters are chosen

appropriately, e.g. by matching with the QFT result.
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